Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506250

RESUMO

During maximal cold challenge (cold-induced V̇O2,max) in hypoxia, highland deer mice (Peromyscus maniculatus) show higher rates of circulatory fatty acid delivery compared with lowland deer mice. Fatty acid delivery also increases with acclimation to cold hypoxia (CH) and probably plays a major role in supporting the high rates of thermogenesis observed in highland deer mice. However, it is unknown which tissues take up these fatty acids and their relative contribution to thermogenesis. The goal of this study was to determine the uptake of circulating fatty acids into 24 different tissues during hypoxic cold-induced V̇O2,max, by using [1-14C]2-bromopalmitic acid. To uncover evolved and environment-induced changes in fatty acid uptake, we compared lab-born and -raised highland and lowland deer mice, acclimated to either thermoneutral (30°C, 21 kPa O2) or CH (5°C, 12 kPa O2) conditions. During hypoxic cold-induced V̇O2,max, CH-acclimated highlanders decreased muscle fatty acid uptake and increased uptake into brown adipose tissue (BAT) relative to thermoneutral highlanders, a response that was absent in lowlanders. CH acclimation was also associated with increased activities of enzymes citrate synthase and ß-hydroxyacyl-CoA dehydrogenase in the BAT of highlanders, and higher levels of fatty acid translocase CD36 (FAT/CD36) in both populations. This is the first study to show that cold-induced fatty acid uptake is distributed across a wide range of tissues. Highland deer mice show plasticity in this fatty acid distribution in response to chronic cold hypoxia, and combined with higher rates of tissue delivery, this contributes to their survival in the cold high alpine environment.


Assuntos
Tecido Adiposo Marrom , Peromyscus , Animais , Peromyscus/fisiologia , Ácidos Graxos , Hipóxia , Aclimatação , Músculos , Termogênese/fisiologia , Temperatura Baixa
2.
Mol Ecol ; 33(7): e17309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429967

RESUMO

Rodents are key reservoirs of zoonotic pathogens and play an important role in disease transmission to humans. Importantly, anthropogenic land-use change has been found to increase the abundance of rodents that thrive in human-built environments (synanthropic rodents), particularly rodent reservoirs of zoonotic disease. Anthropogenic environments also affect the microbiome of synanthropic wildlife, influencing wildlife health and potentially introducing novel pathogens. Our objective was to examine the effect of agricultural development and synanthropic habitat on microbiome diversity and the prevalence of zoonotic bacterial pathogens in wild Peromyscus mice to better understand the role of these rodents in pathogen maintenance and transmission. We conducted 16S amplicon sequencing on faecal samples using long-read nanopore sequencing technology to characterize the rodent microbiome. We compared microbiome diversity and composition between forest and synanthropic habitats in agricultural and undeveloped landscapes and screened for putative pathogenic bacteria. Microbiome richness, diversity, and evenness were higher in the agricultural landscape and synanthropic habitat compared to undeveloped-forest habitat. Microbiome composition also differed significantly between agricultural and undeveloped landscapes and forest and synanthropic habitats. We detected overall low diversity and abundance of putative pathogenic bacteria, though putative pathogens were more likely to be found in mice from the agricultural landscape. Our findings show that landscape- and habitat-level anthropogenic factors affect Peromyscus microbiomes and suggest that landscape-level agricultural development may be important to predict zoonotic pathogen prevalence. Ultimately, understanding how anthropogenic land-use change and synanthropy affect rodent microbiomes and pathogen prevalence is important to managing transmission of rodent-borne zoonotic diseases to humans.


Assuntos
Peromyscus , Doenças dos Roedores , Animais , Humanos , Prevalência , Ecossistema , Roedores , Bactérias/genética , Doenças dos Roedores/microbiologia , Agricultura
3.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328088

RESUMO

The harsh and dry conditions of desert environments have resulted in genomic adaptations, allowing for desert organisms to withstand prolonged drought, extreme temperatures, and limited food resources. Here, we present a comprehensive exploration of gene expression across five tissues (kidney, liver, lung, gastrointestinal tract, and hypothalamus) and 19 phenotypic measurements to explore the whole-organism physiological and genomic response to water deprivation in the desert-adapted cactus mouse (Peromyscus eremicus). The findings encompass the identification of differentially expressed genes and correlative analysis between phenotypes and gene expression patterns across multiple tissues. Specifically, we found robust activation of the vasopressin renin-angiotensin-aldosterone system (RAAS) pathways, whose primary function is to manage water and solute balance. Animals reduce food intake during water deprivation, and upregulation of PCK1 highlights the adaptive response to reduced oral intake via its actions aimed at maintained serum glucose levels. Even with such responses to maintain water balance, hemoconcentration still occurred, prompting a protective downregulation of genes responsible for the production of clotting factors while simultaneously enhancing angiogenesis which is thought to maintains tissue perfusion. In this study, we elucidate the complex mechanisms involved in water balance in the desert-adapted cactus mouse, P. eremicus. By prioritizing a comprehensive analysis of whole-organism physiology and multi-tissue gene expression in a simulated desert environment, we describe the complex and successful response of regulatory processes.

4.
Ecol Evol ; 14(2): e10855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384829

RESUMO

The geographic range of tick populations has expanded in Canada due to climate warming and the associated poleward range shifts of their vertebrate hosts. Abiotic factors, such as temperature, precipitation, and snow, are known to directly affect tick abundance. Yet, biotic factors, such as the abundance and diversity of mammal hosts, may also alter tick abundance and consequent tick-borne disease risk. Here, we incorporated host surveillance data with high-resolution environmental data to evaluate the combined impact of abiotic and biotic factors on questing Ixodes scapularis abundance in Ontario and Quebec, Canada. High-resolution abiotic factors were derived from remote sensing satellites and meteorological towers, while biotic factors related to mammal hosts were derived from active surveillance data that we collected in the field. Generalized additive models were used to determine the relative importance of abiotic and biotic factors on questing I. scapularis abundance. Combinations of abiotic and biotic factors were identified as important drivers of abundances of questing I. scapularis. Positive and negative linear relationships were found for questing I. scapularis abundance with monthly mean precipitation and accumulated snow, but no effect was found for the relative abundance of white-footed mice. Positive relationships were also identified between questing I. scapularis abundance with monthly mean precipitation and mammal species richness. Therefore, future studies that assess I. scapularis should incorporate host surveillance data with high-resolution environmental factors to determine the key drivers impacting the abundance and geographic spread of tick populations and tick-borne pathogens.

5.
Elife ; 122024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193896

RESUMO

The white-footed deermouse Peromyscus leucopus, a long-lived rodent, is a key reservoir in North America for agents of several zoonoses, including Lyme disease, babesiosis, anaplasmosis, and a viral encephalitis. While persistently infected, this deermouse is without apparent disability or diminished fitness. For a model for inflammation elicited by various pathogens, the endotoxin lipopolysaccharide (LPS) was used to compare genome-wide transcription in blood by P. leucopus, Mus musculus, and Rattus norvegicus and adjusted for white cell concentrations. Deermice were distinguished from the mice and rats by LPS response profiles consistent with non-classical monocytes and alternatively-activated macrophages. LPS-treated P. leucopus, in contrast to mice and rats, also displayed little transcription of interferon-gamma and lower magnitude fold-changes in type 1 interferon-stimulated genes. These characteristics of P. leucopus were also noted in a Borrelia hermsii infection model. The phenomenon was associated with comparatively reduced transcription of endogenous retrovirus sequences and cytoplasmic pattern recognition receptors in the deermice. The results reveal a mechanism for infection tolerance in this species and perhaps other animal reservoirs for agents of human disease.


Lyme disease is an illness caused by bacteria that spread from infected animals to humans through tick bites. While most people fully recover after a week or two of antibiotic treatments, some will continue to experience debilitating symptoms due, potentially, to the way their immune system responded to the infection. In North America, the white-footed deermouse is one of the most common hosts of the Lyme disease bacteria. Despite its name, this rodent is more closely related to hamsters than to the mice or rats most often used in laboratory studies. Unlike mice and humans, however, deermice carrying Lyme disease bacteria do not get sick; in fact, most deermice living in a Lyme disease region will acquire the infection during their lifetimes, but it has little apparent effect on population numbers. These animals can also better tolerate infection from other microbes. To investigate why this is the case, Milovic et al. exposed mice, rats and deermice to a bacterial toxin that triggers inflammation common to encounters with many kinds of microbes. While all species exhibited physical symptoms as a result, blood samples revealed that mice and rats, but not deermice, reacted as if they were infected with viruses as well as bacteria. This was particularly the case for interferons, a group of hormone-like proteins that protect against viruses but can also lead to harmful long-term inflammatory effects. The deermice controlled their interferon responses to the bacterial substance in a way that mice and rats could not. Milovic et al. also checked which genes each species switched on after exposure to the toxin. This revealed that, unlike deer mice, rats and mice turned on some DNA sequences called endogenous retroviruses, which have no role in fighting infection from bacteria but can lead to harmful persistent inflammation. These results provide elements to better understand why recovery from Lyme disease may differ between people, with some patients retaining symptoms long after their infection has abated. They could also help to better grasp why other diseases, such as COVID-19, can be followed by fatigue and other symptoms of ongoing inflammation.


Assuntos
Endotoxinas , Interferon Tipo I , Humanos , Camundongos , Animais , Ratos , Lipopolissacarídeos , Interferon gama , Zoonoses
6.
Infect Immun ; 92(1): e0024423, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099660

RESUMO

Interactions among pathogen genotypes that vary in host specificity may affect overall transmission dynamics in multi-host systems. Borrelia burgdorferi, a bacterium that causes Lyme disease, is typically transmitted among wildlife by Ixodes ticks. Despite the existence of many alleles of B. burgdorferi's sensu stricto outer surface protein C (ospC) gene, most human infections are caused by a small number of ospC alleles ["human infectious alleles" (HIAs)], suggesting variation in host specificity associated with ospC. To characterize the wildlife host association of B. burgdorferi's ospC alleles, we used metagenomics to sequence ospC alleles from 68 infected individuals belonging to eight mammalian species trapped at three sites in suburban New Brunswick, New Jersey (USA). We found that multiple allele ("mixed") infections were common. HIAs were most common in mice (Peromyscus spp.) and only one HIA was detected at a site where mice were rarely captured. ospC allele U was exclusively found in chipmunks (Tamias striatus), and although a significant number of different alleles were observed in chipmunks, including HIAs, allele U never co-occurred with other alleles in mixed infections. Our results suggest that allele U may be excluding other alleles, thereby reducing the capacity of chipmunks to act as reservoirs for HIAs.


Assuntos
Borrelia burgdorferi , Borrelia , Coinfecção , Ixodes , Doença de Lyme , Animais , Humanos , Borrelia burgdorferi/genética , Borrelia/genética , Alelos , Doença de Lyme/microbiologia , Ixodes/genética , Ixodes/microbiologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Sciuridae/genética , Especificidade de Hospedeiro
7.
BMC Genomics ; 24(1): 789, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114920

RESUMO

Social interactions affect physiological and pathological processes, yet their direct impact in peripheral tissues remains elusive. Recently we showed that disruption of pair bonds in monogamous Peromyscus californicus promotes lung tumorigenesis, pointing to a direct effect of bonding status in the periphery (Naderi et al., 2021). Here we show that lung transcriptomes of tumor-free Peromyscus are altered in a manner that depends on pair bonding and superseding the impact of genetic relevance between siblings. Pathways affected involve response to hypoxia and heart development. These effects are consistent with the profile of the serum proteome of bonded and bond-disrupted Peromyscus and were extended to lung cancer cells cultured in vitro, with sera from animals that differ in bonding experiences. In this setting, the species' origin of serum (deer mouse vs FBS) is the most potent discriminator of RNA expression profiles, followed by bonding status. By analyzing the transcriptomes of lung cancer cells exposed to deer mouse sera, an expression signature was developed that discriminates cells according to the history of social interactions and possesses prognostic significance when applied to primary human lung cancers. The results suggest that present and past social experiences modulate the expression profile of peripheral tissues such as the lungs, in a manner that impacts physiological processes and may affect disease outcomes. Furthermore, they show that besides the direct effects of the hormones that regulate bonding behavior, physiological changes influencing oxygen metabolism may contribute to the adverse effects of bond disruption.


Assuntos
Neoplasias Pulmonares , Peromyscus , Animais , Humanos , Peromyscus/genética , Transcriptoma , Pulmão , Neoplasias Pulmonares/genética , Proteínas de Ligação a DNA
8.
J Vector Ecol ; 49(1): 44-52, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38147300

RESUMO

In the United States, there has been a steady increase in diagnosed cases of tick-borne diseases in people, most notably Lyme disease. The pathogen that causes Lyme disease, Borrelia burgdorferi, is transmitted by the blacklegged tick (Ixodes scapularis). Several small mammals are considered key reservoirs of this pathogen and are frequently-used hosts by blacklegged ticks. However, limited studies have evaluated between-species host use by ticks. This study compared I. scapularis burdens and tick-associated pathogen presence in wild-caught Clethrionomys gapperi (southern red-backed voles) and Peromyscus spp. (white-footed mice) in forested areas where the habitat of both species overlapped. Rodent trapping data collected over two summers showed a significant difference in the average tick burden between species. Adult Peromyscus spp. had an overall mean of 4.03 ticks per capture, while adult C. gapperi had a mean of 0.47 ticks per capture. There was a significant association between B. burgdorferi infection and host species with more Peromyscus spp. positive samples than C. gapperi (65.8% and 10.2%, respectively). This work confirms significant differences in tick-host use and pathogen presence between sympatric rodent species. It is critical to understand tick-host interactions and tick distributions to develop effective and efficient tick control methods.


Assuntos
Ixodes , Doença de Lyme , Humanos , Animais , Adulto , Roedores , Peromyscus , Arvicolinae
9.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921453

RESUMO

Desert organisms have evolved physiological, biochemical and genomic mechanisms to survive the extreme aridity of desert environments. Studying desert-adapted species provides a unique opportunity to investigate the survival strategies employed by organisms in some of the harshest habitats on Earth. Two of the primary challenges faced in desert environments are maintaining water balance and thermoregulation. We collected data in a simulated desert environment and a captive colony of cactus mice (Peromyscus eremicus) and used lab-based experiments with real time physiological measurements; energy expenditure, water loss rate and respiratory exchange rate, to characterize the response to water deprivation. Mice without access to water had significantly lower energy expenditures and in turn, reduced water loss compared to mice with access to water after the first 24 h of the experiment. Additionally, we observed significant mass loss that is probably due to dehydration-associated anorexia a response to limit fluid loss by reducing waste and the solute load as well as allowing water reabsorption from the kidneys and gastrointestinal tract. Finally, we observed body temperature correlated with sex, with males without access to water maintaining body temperature when compared with hydrated males, whereas body temperature decreased for females without access to water, suggesting daily metabolic depression in females.


Assuntos
Desidratação , Peromyscus , Masculino , Animais , Feminino , Desidratação/veterinária , Desidratação/metabolismo , Clima Desértico , Água Corporal , Água
10.
R Soc Open Sci ; 10(11): 230809, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026027

RESUMO

The North American deermouse (Peromyscus maniculatus) is a reservoir host for many zoonotic pathogens. Deermice have been well studied, but few studies have attempted to understand social interactions within the species despite these interactions being key to understanding disease transmission. We performed an experiment to determine if supplemental food or nesting material affected social interactions of deermice and tested if interactions increased with increasing population density. We constructed three simulated buildings that received one of three treatments: food, nesting material, or control. Mice were tagged with passive integrated transponder (PIT) tags, and their movement in and out of buildings was monitored with PIT tag readers. PIT tag readings were used to create contact networks, assuming a contact if two deermice were in the same building at the same time. We found that buildings with food led to contact networks that were approximately 10 times more connected than buildings with nesting material or control buildings. We also saw a significant effect of population density on the average number of contacts per individual. These results suggest that food supplementation which is common in peridomestic settings, can significantly increase contacts between reservoir hosts, potentially leading to increased transmission of zoonotic viruses within the reservoir host and from reservoir hosts to humans.

11.
J Physiol ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889163

RESUMO

A key question in biology concerns the extent to which distributional range limits of species are determined by intrinsic limits of physiological tolerance. Here, we use common-garden data for wild rodents to assess whether species with higher elevational range limits typically have higher thermogenic capacities in comparison to closely related lowland species. Among South American leaf-eared mice (genus Phyllotis), mean thermogenic performance is higher in species with higher elevational range limits, but there is little among-species variation in the magnitude of plasticity in this trait. In the North American rodent genus Peromyscus, highland deer mice (Peromyscus maniculatus) have greater thermogenic maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) than lowland white-footed mice (Peromyscus leucopus) at a level of hypoxia that matches the upper elevational range limit of the former species. In highland deer mice, the enhanced thermogenic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in hypoxia is attributable to a combination of evolved and plastic changes in physiological pathways that govern the transport and utilization of O2 and metabolic substrates. Experiments with Peromyscus mice also demonstrate that exposure to hypoxia during different stages of development elicits plastic changes in cardiorespiratory traits that improve thermogenic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ via distinct physiological mechanisms. Evolved differences in thermogenic capacity provide clues about why some species are able to persist in higher-elevation habitats that lie slightly beyond the tolerable limits of other species. Such differences in environmental tolerance also suggest why some species might be more vulnerable to climate change than others.

12.
Horm Behav ; 156: 105443, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871536

RESUMO

Social information gathering is a complex process influenced by neuroendocrine-modulated neural plasticity. Oxytocin (OXT) is a key regulator of social decision-making processes such as information gathering, as it contextually modulates social salience and can induce long-term structural plasticity, including neurogenesis. Understanding the link between OXT-induced plasticity and communicative awareness is crucial, particularly because OXT is being considered for treatment of social pathologies. We investigated the role of chronic OXT-dependent plasticity in attention to novel social information by manipulating the duration of time following cessation of intranasal treatment to allow for the functional integration of adult-born neurons resulting from OXT treatment. Following a 3-week delay, chronic intranasal OXT (IN-OXT) increased approach behavior of both female and male mice towards aggressive vocal playbacks of two unseen novel conspecifics, while no effect was observed after a 3-day delay. Immature neurons increased in the ventral hippocampus of females and males treated with chronic IN-OXT after the 3-week delay, indicating a potential association between ventral hippocampal neurogenesis and approach/acoustic eavesdropping. The less the mouse approached, the higher the level of neurogenesis. Contrary to expectations, the correlation between ventral hippocampal neurogenesis and approach behavior was not affected by IN-OXT, suggesting that other plasticity mechanisms underlie the long-term effects of chronic OXT on social approach. Furthermore, we found a negative correlation between ventral hippocampal neurogenesis and freezing behavior. Overall, our results demonstrate that chronic IN-OXT-induced long-term plasticity can influence approach to vocal information and we further reinforced the link between neurogenesis and anxiety.


Assuntos
Ocitocina , Receptores de Ocitocina , Masculino , Camundongos , Feminino , Animais , Ocitocina/farmacologia , Receptores de Ocitocina/metabolismo , Agressão , Hipocampo/metabolismo , Administração Intranasal , Neurogênese
13.
J Vector Ecol ; 48(2): 89-102, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37843451

RESUMO

White-footed mouse (Peromyscus leucopus) populations can thrive in fragmented suburban and urban parks and residential spaces and play a pivotal role in the spread and prevalence of tick-borne diseases. We collected spatial data on 58 individual mice living at the intersection of county park land and residential land in suburban Howard County, MD, U.S.A. We analyzed mouse density, home-range size and overlap, and a Bayesian mixed-effects model to identify the habitats where they were found relative to where they were caught, as well as a resource selection function for general habitat use. We found that as mouse density increased, home-range size decreased. The overlap indices and the resource selection function supported territoriality coupled with site-specific space use in these suburban mouse populations. While mice occurred in open areas, forest edge, and forest, they showed a strong preference for forested areas. Interestingly, mice captured only 30 to 40 m into the forest rarely used the nearby private yards or human structures and this has direct implications for the placement of rodent-targeted tick control treatments. Our study supports the need for zoonotic disease management frameworks that are based on site-specific land cover characteristics as well as specific management objectives.


Assuntos
Ixodes , Doença de Lyme , Carrapatos , Humanos , Animais , Peromyscus , Teorema de Bayes , Territorialidade , Ecossistema , Doença de Lyme/epidemiologia
14.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461486

RESUMO

Desert organisms have evolved physiological, biochemical, and genomic mechanisms to survive the extreme aridity of desert environments. Studying desert-adapted species provides a unique opportunity to investigate the survival strategies employed by organisms in some of the harshest habitats on Earth. Two of the primary challenges faced in desert environments are maintaining water balance and thermoregulation. We collected data in a simulated desert environment and a captive colony of cactus mice (Peromyscus eremicus) and used lab-based experiments with real time physiological measurements to characterize the response to water-deprivation. Mice without access to water had significantly lower energy expenditures and in turn, reduced water loss compared to mice with access to water after the first 24 hours of the experiment. Additionally, we observed significant weight loss likely related to dehydration-associated anorexia a response to limit fluid loss by reducing waste and the solute load as well as allowing water reabsorption from the kidneys and gastrointestinal tract. Finally, we observed body temperature correlated with sex, with males without access to water maintaining body temperature when compared to hydrated males while body temperature decreased for females without access to water compared to hydrated, suggesting daily torpor in females.

15.
Proc Natl Acad Sci U S A ; 120(25): e2218049120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307471

RESUMO

Environmental hypoxia challenges female reproductive physiology in placental mammals, increasing rates of gestational complications. Adaptation to high elevation has limited many of these effects in humans and other mammals, offering potential insight into the developmental processes that lead to and protect against hypoxia-related gestational complications. However, our understanding of these adaptations has been hampered by a lack of experimental work linking the functional, regulatory, and genetic underpinnings of gestational development in locally adapted populations. Here, we dissect high-elevation adaptation in the reproductive physiology of deer mice (Peromyscus maniculatus), a rodent species with an exceptionally broad elevational distribution that has emerged as a model for hypoxia adaptation. Using experimental acclimations, we show that lowland mice experience pronounced fetal growth restriction when challenged with gestational hypoxia, while highland mice maintain normal growth by expanding the compartment of the placenta that facilitates nutrient and gas exchange between gestational parent and fetus. We then use compartment-specific transcriptome analyses to show that adaptive structural remodeling of the placenta is coincident with widespread changes in gene expression within this same compartment. Genes associated with fetal growth in deer mice significantly overlap with genes involved in human placental development, pointing to conserved or convergent pathways underlying these processes. Finally, we overlay our results with genetic data from natural populations to identify candidate genes and genomic features that contribute to these placental adaptations. Collectively, these experiments advance our understanding of adaptation to hypoxic environments by revealing physiological and genetic mechanisms that shape fetal growth trajectories under maternal hypoxia.


Assuntos
Peromyscus , Placenta , Gravidez , Humanos , Animais , Feminino , Aclimatação , Desenvolvimento Fetal , Hipóxia
16.
Vector Borne Zoonotic Dis ; 23(6): 311-315, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37126383

RESUMO

In 2011, Ehrlichia muris eauclairensis (EME) was described as a human pathogen spread by the blacklegged tick, Ixodes scapularis. Until very recently, its reported distribution was limited to the upper midwestern United States, mainly in Minnesota and Wisconsin. In this study, we report the detection of EME DNA in 4 of 16,146 human biting I. scapularis ticks submitted from Massachusetts to a passive tick surveillance program. Active tick surveillance yielded evidence of EME local transmission in the northeastern United States through detection of EME DNA in 2 of 461 host-seeking I. scapularis nymphs, and in 2 white-footed mice (Peromyscus leucopus) of 491 rodent samples collected in the National Ecological Observatory Network (NEON) Harvard Forest site in Massachusetts.


Assuntos
Ixodes , Animais , Humanos , Peromyscus , Ehrlichia/genética , Massachusetts/epidemiologia , Roedores
17.
Int J Parasitol Parasites Wildl ; 21: 33-42, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37124670

RESUMO

A promising alternative approach to conventional vector control practices is the use of systemic insecticides/acaricides orally administered to relevant mammalian host species to control blood feeding disease vectors. In the United States, Lyme disease continues to be the most prevalent vector-borne disease with the Centers for Disease Control and Prevention estimating approximately 500,000 Lyme disease infections each year. Previous research has demonstrated the potential usefulness of a low dose fipronil bait in controlling Ixodes scapularis larvae feeding on white-footed mice. However, no such acaricide-only product is approved for use in treating white-footed mice to control I. scapularis. The purpose of the study was to evaluate the use of a federally approved fipronil flea control bait (Grain Bait) in controlling I. scapularis parasitizing white-footed mice (Peromyscus leucopus). A simulated field trial was conducted in which Grain Bait was presented to grouped white-footed mice alongside an alternative diet for 168 h. Mice were fitted with capsules and manually parasitized with I. scapularis larvae. Replete larvae detaching from each mouse were collected and monitored for molting to nymphs. The inside of each capsule was observed to evaluate tick attachment. Blood was collected from all Treatment group mice via cardiac puncture to determine the fipronil sulfone concentration in plasma (CP) for each animal. Results indicated that Grain Bait would be consumed in the presence of an alternative diet and that bait acceptance was greater for males, relative to females. Treatment with Grain Bait prevented 100% larvae from feeding to repletion at Day 7 post-exposure and prevented 80% of larvae from feeding to repletion and 84% from molting at Day 21 post-exposure, relative to Control groups. Molted nymphs were not recovered from mice that had CP detectable ≥18.4 ng/ml. The results suggest that this federally approved flea product could be utilized for tick control and that other medically important vector-host relationships should be considered.

18.
Am J Physiol Endocrinol Metab ; 325(1): E32-E45, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224469

RESUMO

Activation of brown adipose tissue (BAT) thermogenesis impacts energy balance and must be tightly regulated. Several neurotrophic factors, expressed in BAT of adult laboratory rodents, have been implicated in remodeling the sympathetic neural network to enhance thermogenesis [e.g., nerve growth factor (NGF), neuregulin-4 (NRG4), and S100b]. Here, we compare, to our knowledge, for the first time, the relative roles of three neurotrophic "batokines" in establishing/remodeling innervation during postnatal development and adult cold stress. We used laboratory-reared Peromyscus maniculatus, which rely heavily on BAT-based thermogenesis for survival in the wild, beginning between postnatal days (P) 8 and 10. BAT sympathetic innervation was enhanced from P6 to P10, and exogenous NGF, NRG4, and S100b stimulated neurite outgrowth from P6 sympathetic neurons. Endogenous BAT protein stores and/or gene expression of NRG4, S100b, and calsyntenin-3ß (which may regulate S100b secretion) remained high and constant during development. However, endogenous NGF was low and ngf mRNA was undetectable. Conditioned media (CM) from cultured P10 BAT slices stimulated neurite outgrowth from sympathetic neurons in vitro, which was inhibited by antibodies against all three growth factors. P10 CM had significant amounts of secreted NRG4 and S100b protein, but not NGF. By contrast, BAT slices from cold-acclimated adults released significant amounts of all three factors relative to thermoneutral controls. These data suggest that although neurotrophic batokines regulate sympathetic innervation in vivo, their relative contributions differ depending on the life stage. They also provide novel insights into the regulation of BAT remodeling and BAT's secretory role, both of which are critical to our understanding of mammalian energy homeostasis.NEW & NOTEWORTHY In altricial Peromyscus mice, the developmental shift to endothermy accompanies the establishment of the brown adipose tissue sympathetic neural network. Cultured slices of neonatal BAT secreted high quantities of two predicted neurotrophic batokines: S100b and neuregulin-4, but surprisingly low levels of the classic neurotrophic factor, NGF. Despite low NGF, neonatal BAT-conditioned media was highly neurotrophic. Cold-exposed adults use all three factors to dramatically remodel BAT, suggesting that BAT-neuron communication is life-stage dependent.


Assuntos
Tecido Adiposo Marrom , Peromyscus , Animais , Tecido Adiposo Marrom/metabolismo , Meios de Cultivo Condicionados , Termogênese/fisiologia , Homeostase
19.
Mol Ecol ; 32(13): 3483-3496, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37073620

RESUMO

Phenotypic plasticity can play an important role in the ability of animals to tolerate environmental stress, but the nature and magnitude of plastic responses are often specific to the developmental timing of exposure. Here, we examine changes in gene expression in the diaphragm of highland deer mice (Peromyscus maniculatus) in response to hypoxia exposure at different stages of development. In highland deer mice, developmental plasticity in diaphragm function may mediate changes in several respiratory traits that influence aerobic metabolism and performance under hypoxia. We generated RNAseq data from diaphragm tissue of adult deer mice exposed to (1) life-long hypoxia (before conception to adulthood), (2) post-natal hypoxia (birth to adulthood), (3) adult hypoxia (6-8 weeks only during adulthood) or (4) normoxia. We found five suites of co-regulated genes that are differentially expressed in response to hypoxia, but the patterns of differential expression depend on the developmental timing of exposure. We also identified four transcriptional modules that are associated with important respiratory traits. Many of the genes in these transcriptional modules bear signatures of altitude-related selection, providing an indirect line of evidence that observed changes in gene expression may be adaptive in hypoxic environments. Our results demonstrate the importance of developmental stage in determining the phenotypic response to environmental stressors.


Assuntos
Hipóxia , Peromyscus , Animais , Peromyscus/genética , Hipóxia/metabolismo , Respiração , Adaptação Fisiológica/genética , Altitude
20.
Front Cell Infect Microbiol ; 13: 1115350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113133

RESUMO

Lyme disease (LD), the most prevalent tick-borne disease of humans in the Northern Hemisphere, is caused by the spirochetal bacterium of Borreliella burgdorferi (Bb) sensu lato complex. In nature, Bb spirochetes are continuously transmitted between Ixodes ticks and mammalian or avian reservoir hosts. Peromyscus leucopus mice are considered the primary mammalian reservoir of Bb in the United States. Earlier studies demonstrated that experimentally infected P. leucopus mice do not develop disease. In contrast, C3H mice, a widely used laboratory strain of Mus musculus in the LD field, develop severe Lyme arthritis. To date, the exact tolerance mechanism of P. leucopus mice to Bb-induced infection remains unknown. To address this knowledge gap, the present study has compared spleen transcriptomes of P. leucopus and C3H/HeJ mice infected with Bb strain 297 with those of their respective uninfected controls. Overall, the data showed that the spleen transcriptome of Bb-infected P. leucopus mice was much more quiescent compared to that of the infected C3H mice. To date, the current investigation is one of the few that have examined the transcriptome response of natural reservoir hosts to Borreliella infection. Although the experimental design of this study significantly differed from those of two previous investigations, the collective results of the current and published studies have consistently demonstrated very limited transcriptomic responses of different reservoir hosts to the persistent infection of LD pathogens. Importance: The bacterium Borreliella burgdorferi (Bb) causes Lyme disease, which is one of the emerging and highly debilitating human diseases in countries of the Northern Hemisphere. In nature, Bb spirochetes are maintained between hard ticks of Ixodes spp. and mammals or birds. In the United States, the white-footed mouse, Peromyscus leucopus, is one of the main Bb reservoirs. In contrast to humans and laboratory mice (e.g., C3H mice), white-footed mice rarely develop clinical signs (disease) despite being (persistently) infected with Bb. How the white-footed mouse tolerates Bb infection is the question that the present study has attempted to address. Comparisons of genetic responses between Bb-infected and uninfected mice demonstrated that, during a long-term Bb infection, C3H mice reacted much stronger, whereas P. leucopus mice were relatively unresponsive.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Camundongos , Humanos , Peromyscus/microbiologia , Transcriptoma , Camundongos Endogâmicos C3H , Reservatórios de Doenças , Doença de Lyme/microbiologia , Borrelia burgdorferi/genética , Ixodes/microbiologia , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...